- 1. $\int tgxdx = \int \frac{senx}{cosx}$ resolveré esta integral por cambio de variable, t=cosx; dt=-senxdx; sustituimos y nos queda la integral $\int -\frac{1}{t}dt = -lnt$ deshacemos el cambio y nos da la solución de la integral $-\ln{(cosx)}+C$
- integral $-\ln(cosx)+C$ 2. $\int \frac{senx+cosx}{cosx} dx = \int \frac{senx}{cosx} dx + \int \frac{cosx}{cosx} dx$ realizamos el mismo cambio que antes y además la primera integral es igual y la segunda es muy fácil nos quedan $-\ln(cosx)+x+C$
- 3. $\int \frac{sen\sqrt{x}}{\sqrt{x}} dx$; aplicamos el cambio de variable $t = \sqrt{x}$; $dt = \frac{1}{2\sqrt{x}} dx$; por lo tanto, $\frac{1}{2} \int sent dt = \frac{1}{2} cost$ volviendo a deshacer el cambio tenemos $\frac{1}{2} cos\sqrt{x} + C$
- 4. $\int \frac{dx}{x lnx}$; hacemos el siguiente cambio lnx=t; (1/x)dx=dt. Lo trasladamos a la integral $\int \frac{dt}{t} = lnt$; quitando el cambio; ln(lnx)+C
- 5. $\int \frac{sen(lnx)}{x} dx$ luego hacemos el siguiente cambio t=lnx; $dt = \frac{1}{x} dx$; por lo tanto, $\int sent dt = -cost$, con el cambio nos queda -cos(lnx)+C
- 6. $\int \frac{sen3x}{cos^2 3x} dx$; el cambio es cos3x=t; -3sen3xdx=dt; $-\frac{1}{3} \int \frac{-3sen3x}{cos^2 3x} dx = -\frac{1}{3} \int \frac{dt}{t^2} = -\frac{1}{3} t^{-1} = \frac{-1}{3t}$ con el cambio nos da $-\frac{1}{3cos3x} + C$